Valid Inequalities for Problems with Additive Variable Upper Bounds
نویسندگان
چکیده
We study the facial structure of a polyhedron associated with the single node re laxation of network ow problems with additive variable upper bounds This type of structure arises for example in network design expansion problems in production planning problems with setup times We rst derive two classes of valid inequalities for this polyhedron and give the conditions under which they are facet de ning Then we generalize our results through sequence independent lifting of valid inequalities for lower dimensional projections Our com putational experience with large network expansion problems indicates that these inequalities are very e ective in improving the quality of the linear programming relaxations
منابع مشابه
Valid Inequalities for Problems with Additive Variable Upper Bounds 1 2
We study the facial structure of a polyhedron associated with the single node relaxation of network ow problems with additive variable upper bounds. This type of structure arises for example in network design/expansion problems, in production planning problems with setup times. We rst derive two classes of valid inequalities for this polyhedron and give the conditions under which they are facet...
متن کاملValid inequalities for problems with additive variable upper
We study the facial structure of a polyhedron associated with the single node relaxation of network flow problems with additive variable upper bounds. This type of structure arises, for example, in production planning problems with setup times and in network certain expansion problems. We derive several classes of valid inequalities for this polyhedron and give conditions under which they are f...
متن کاملNetwork design arc set with variable upper bounds
In this paper we study the network design arc set with variable upper bounds. This set appears as a common substructure of many network design problems and is a relaxation of several fundamental mixed-integer sets studied earlier independently. In particular, the splittable flow arc set, the unsplittable flow arc set, the single node fixed-charge flow set, and the binary knapsack set are facial...
متن کاملThe 0-1 Knapsack problem with a single continuous variable
Constraints arising in practice often contain many 0-1 variables and one or a small number of continuous variables. Existing knapsack separation routines cannot be used on such constraints. Here we study such constraint sets, and derive valid inequalities that can be used as cuts for such sets, as well for more general mixed 0-1 constraints. Specifically we investigate the polyhedral structure ...
متن کاملCutting planes from conditional bounds : a new approach to set covering
A conditional lower bound on the minimand of an integer program is a number which would be a valid lower bound if the constraint set were amended by certain inequalities, also called conditional. If such a conditional lower bound exceeds some known upper bound, then every solution better than the one corresponding to the upper bound violates at least one of the conditional inequalities. This yi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 91 شماره
صفحات -
تاریخ انتشار 1999